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Cooper ,  Hutchinson,  Morgan  & Mathey  (1979). Fur- 
thermore,  if  the value of  K ( M M )  is set to zero we 
see a drop of  only ---30% in the energy of  the M~- M 
stretch, indicating that  most  of  the contr ibution to 
the force field at the metal  atoms is f rom elsewhere 
in the structure.  Clearly, the previous workers '  neglect 
of  the other  contr ibutions to the force field lead to a 
substantial  overest imate of  K ( M M )  as well as an 
improper  ranking of  K ( M M )  values for related com- 
pounds.  Moreover ,  the use of  a more generalized 
force field with fewer parameters  has given us a 
vibrat ional  model  that  is well determined by the avail- 
able IR  and  R a m a n  spectra without neglect of  any 
interactions. 

We thank  W. R. Busing for useful discussions and 
the Academic  Compute r  Services at Arizona State 
University for a generous allocation of  computer  time. 
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Abstract 

For  the classification of  structures with te t rahedral  
anion complexes such as silicates or phosphates  
different parameters  have been proposed,  such as 
Zolta'i 's te t rahedral  sharing coefficient or Liebau 's  
connectedness  and linkedness.  Another  parameter ,  

* The main part of this paper is a modified version of one chapter 
of the PhD thesis submitted by N. Engel to Geneva University. 

5" Present address: Drpartement de Minrralogie du Musrum 
d'Histoire Naturelle, 1 route de Malagnou, CH-1211 Gen~ve 6, 
Switzerland. 

labelled TT, is discussed here, which denotes the 
average per  te t rahedron  of  the sum (over all four  
comers  of  a te t rahedron)  of  the number  of  te t rahedra  
which are connected with one comer  of  the tetrahe- 
dron considered.  I f  there are only isolated or corner- 
connected te t rahedra  in the structure the T T  
parameter  corresponds  simply to the average number  
of  t e t r ahedron- t e t r ahedron  connections per  tetrahe- 
dron. The T T  paramete r  can be related to Zoltai ' s  
sharing coefficient and Liebau 's  connectedness and 
linkedness.  The par t icular  advantage  of  the introduc- 
tion of  the T T  paramete r  is that it can be obtained 
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in a very simple way from the composition of the 
compound. The formula relating TT and composition 
is independent of the particular kind of atoms which 
form the tetrahedra and is thus valid for all kinds of 
structures with tetrahedral anion complexes such as 
phosphates, silicates, fluoroberyllates and others. The 
formula is equally valid for corner- or edge-linked 
tetrahedral anion complexes. The usefulness of this 
formula is demonstrated on different examples. The 
formula permits the prediction of possible tetrahe- 
dron connections and serves also as a check on the 
correctness of a structure determination. 

Introduction 

Since the time of Machatschki and Bragg, the different 
kinds of tetrahedron connections have formed the 
basis for a structural classification of silicates in neso-, 
soro-, cyclo-, ino-, phyllo- and tectosilicates. Zolta'i 
(1960) gave the first mathematical formulation of the 
tetrahedron connection in silicates and other struc- 
tures built up of tetrahedral anion complexes by 
introducing the tetrahedral sharing coefficient, Cz, 
which is defined as the average number of tetrahedra 
participating in sharing of a tetrahedral corner. It 
varies between 1 (for nesosilicates with isolated 
tetrahedra) and 2 (for tectosilicates). The tetrahedral 
sharing coefficient for tetrahedral structures has 
been related (Parthr, 1964) to the valence-electron 
numbers of the participating atoms and the valence- 
electron concentration of the compound. The corre- 
sponding equation is discussed in the Appendix. 

In 1969 Coda presented a modified sharing 
coefficient (Cc) for the classification of silicates, which 
can be obtained from ZoltaVs coefficient by means of 

Cc=4(Cz-1) .  (1) 

Cc is defined by Coda as the average number of O 
atoms per tetrahedron which are shared with other 
tetrahedra. He considered only silicates with isolated 
tetrahedra or with tetrahedra connected by corners 
only to a maximum of four other tetrahedra. Coda's 
coefficient varies between 0 (for r~esosilicates) and 4 
(for tectosilicates). 

The tetrahedra in the structures with tetrahedral 
anion complexes can be classified according to Liebau 
(1985) by means of two parameters: linkedness and 
connectedness. Linkedness indicates the number of 
anions shared between two adjacent tetrahedra. Con- 
nectedness of a tetrahedron is defined as the number 
of tetrahedra which share anions with a given 
tetrahedron. 

Definition of the TT parameter 

We shall introduce here a parameter, which we have 
labelled TT in analogy to the A A  or CC parameters 
which characterize the anion-anion or cation-cation 
connections in polyanionic or polycationic valence 

compounds (Parthr, 1973). It corresponds numeri- 
cally to Coda's coefficient, but differs in its definition 
in that it allows the possibility of edge-connected 
tetrahedra and also extension to other compounds 
with tetrahedral anion complexes, other than silicates 
or phosphates. The TT parameter is defined as the 
average per tetrahedron of the sum (over all four 
corners of a given tetrahedron) of the number of 
tetrahedra connected with one corner of the given 
tetrahedron. For structures with only isolated 
tetrahedra ( TT = 0) or with tetrahedra which are not 
edge-connected but only corner-connected, the TT 
value corresponds to the average value of Liebau's 
connectedness. TT is then equivalent to the average 
number of tetrahedron-tetrahedron connections per 
tetrahedron. The TT parameter which has been used 
in a previous publication (Parthr, 1980) was defined 
in this simple form because only structures with 
isolated or corner-connected tetrahedra had been 
considered at this time. However, more and more 
structures have become known, most of them deter- 
mined recently, which are characterized by edge- 
connected tetrahedra. It is thus advantageous to have 
a classification parameter which allows for 
comer- and edge-connected tetrahedra and which in 
addition can be quickly calculated from the chemical 
composition of the compound. 

Mineralogists and others, working intensively with 
structures characterized by tetrahedral anion com- 
plexes, associate a particular kind of tetrahedron 
connection pattern with each composition. This is not 
so evident for those not directly involved in this field. 
To recognize the kind of possible tetrahedron connec- 
tion - for example, in NaaMg2PsO16 - requires a cer- 
tain effort. It is the purpose of this note to show that, 
under certain conditions, TT values can be calculated 
quickly by means of a simple formula. By defining 
TT in the above way, it will be possible, as shown 
below, to obtain a relation between TT and the com- 
position of the compound which is independent of 
the linkedness of the tetrahedra. 

The tetrahedral sharing coefficient, its modified 
version, the connectedness and the linkedness, which 
have been used so far to classify structures with 
tetrahedral anion complexes, were formulated on the 
basis of strictly geometrical considerations, their rela- 
tion with the numbers of valence electrons of the 
atoms present having been ignored. It will be shown 
here that a relation between TT and the composition 
of the compound can be derived assuming that (a) 
all anions in the tetrahedral anion complex complete 
their octets and (b) the compound is a normal valence 
compound. 

TT and its relation to the composition of the compound 

Let us assume a structure with composition 
I 

C,,,C.,,A. with a tetrahedral anion complex ' C.,,An. 
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Each tetrahedron consists of a central atom C', 
tetrahedrally coordinated by four anions A of which 
some may be shared with another tetrahedron. The 
C atoms which serve as cations do not participate in 
the formation of the tetrahedra; however, the valence 
electrons which they p rov ide-  there are mec elec- 
trons - exactly complete the octets of all atoms in the 
tetrahedral anion complex. As seen in Fig. 1, an 
isolated tetrahedral anion complex needs 32 valence 
electrons in order that its five atoms have complete 
octet shells (which consist formally of lone electron 
pairs and /o r  shared two-electron bonds between C'  
and A). If a tetrahedron is corner-connected with 
another tetrahedron only 28 valence electrons per 
tetrahedron are necessary, i.e. four electrons less. If 
a tetrahedron is corner-connected with two other 
tetrahedra or edge-connected with one other tetrahe- 
dron only 24 electrons per tetrahedron are necessary, 
i.e. eight electrons less. 

In general, when T T  indicates the average per 
tetrahedron of the sum (over the four comers of a 
given tetrahedron) of the number of the tetrahedra 
connected with one comer, the average number of 
valence electrons needed for one tetrahedron, in order 
that all atoms complete their octet, is 3 2 - 4 T T .  Thus 

mec + m'ec,+ neA = m' ( 3 2 - 4 T T )  
total No. of No. of average No. of 

valence electrons tetrahedra electrons for 
one telrahedron 

for0<_ TT<_4 (2) 

where ec, ec, and ea are the valence electrons of the 
elements which serve as cations (C or C') and as 
anions (A), and m, m' and n are composition 
parameters. 

The compounds considered are normal valence 
compounds for which the compensation of the 
charges can be expressed by 

mec + m ' e c , -  n(8 - eA). (3) 

Inserting (3) in (2) one obtains 

T T = 2 ( 4 - n / m ' )  f o r 0 -  < TT<-4. (4) 

The value of T T  does not depend on ec, ec, or eA 
but only on n and m'. Equation (4) is thus valid not 
only for silicates and phosphates, but for all structures 
with tetrahedral anion complexes. Further, it applies 
not only to structures with corner-linked tetrahedra, 

 '-rj 
I - -  I I 

IAI IA_J I A_.I 
32 electrons/tetrahedron 28 electrons/tetrahedron 

Fig. 1. Electron count  for the case o f  completed octets o f  all a toms 
in an isolated te t rahedron and a corner-shared double  
tetrahedron.  

but also to those with edge-linked tetrahedra if one 
takes care that the tetrahedron-tetrahedron connec- 
tions are counted according to each comer of the 
tetrahedron. In the case of a tetrahedron which is 
edge-linked to a second, two comers of the considered 
tetrahedron each have one tetrahedron connection, 
i.e., the sum, as defined above, has the value of 2. 
For an edge-linked double tetrahedron, as observed, 
for example, with A12C16, the value of TT  is 2. 

The conditions for the application of this simple 
formula are as follows: 

(a) A tetrahedron comer may be either unshared 
or shared with only one other tetrahedron (0_< TT  <_ 
4; for a relaxation of this condition see Appendix). 

(b) The compound must be a normal valence com- 
pound (which is nearly always the case). 

(c) There should be no ambiguity as to which 
atoms serve as central atoms (C')  and which are 
outside of the tetrahedra (C).  There should be either 
no other anions beside those forming the tetrahedron 
(A) or these extra anions have been properly sub- 
tracted from the formula to obtain the correct n~ m' 
ratio. This condition is the most restrictive which 
limits the unreserved use of equation (4). 

The interpretation of TT  values depends on the 
linkedness of the tetrahedra. 

( a ) Tetrahedra are isolated or corner-linked 

T h e  

I f  n~ m' = 4 
nlm' =7 

7>_n/m'>3 
n / m ' = 3  

simplest interpretation of TT  is as follows: 

nlm' =~ 

n/m'=2 

TT  = 0 isolated tetrahedra 
TT = 1 double  te trahedra 

1 <- TT  < 2 limited chains o f  te trahedra 
TT  = 2 infinite chains or rings of  

tetrahedra 
TT  = 3 each te t rahedron connected  

with three other  te t rahedra 
TT = 4 each te t rahedron with four  

connections.  

For chains with a limited number of tetrahedra 
their length CL (= number of corner-linked tetrahedra 
in a chain) can be calculated according to 

CL= 2 / ( 2 -  T T ) =  1 / [ ( n / m ' ) - 3 ]  

for 0-< TT  < 2 and linkedness 0 or 1. (5a) 

The simplest solutions of n/m' ,  TT  and CL are listed 
in the upper part of Table 1. The chain length 
expressed by CL applies to the most common case 
of an unbranched chain of tetrahedra. If the chain is 
branched, CL indicates the total number oftetrahedra 
in the chain. In compounds where different kinds of 
chains occur the parameter CL indicates the average 
chain length. One example is kilchoanite, Ca3Si207 
(Taylor, 1971), for which one calculates that CL= 2 
but which is characterized by an isolated tetrahedron 
(CL= 1) and a finite chain of three corner-connected 
tetrahedra (CL = 3). 
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Table 1. Simple solutions of  n/ m', TTand CL or CL* 
for structures with finite tetrahedron chains 

Adjacent tetrahedra linked by a common comer only 
n / m '  4 7 ~_ ~ ~ ~- . . .  3 ( C L + I ) / C L  . . .  3 

T T  0 1 ~ 6 ~ Kl° . . . . . .  2( C L -  1)/ C L  2 

CL  1 2 3 4 5 6 . . .  CL  . . .  oo 

Adjacent tetrahedra linked by a common edge only 
n / m '  4 3 3 8- ~ ~ . . .  2 ( C L * + I ) / C L *  . . .  2 

T T  0 2 ~ 3 ~ . . .  4 ( C L * - I ) / C L *  . . .  4 

CL* 1 2 3 4 5 . . .  CL* . . .  oo 

( b ) Tetrahedra are edge-linked 

The most simple case, a molecule of two edge- 
linked tetrahedra, can be considered as a special case 
of a tetrahedron ring consisting of two tetrahedra 
only. The corresponding TT value is 2 and n~ m' = 3. 
If each tetrahedron is edge-linked with two tetrahedra 
one has a straight infinite chain where TT = 4 and 
n /m '=  2. In between these two extremes one might 
find finite chains of edge-linked tetrahedra. If CL* 
indicates the number of tetrahedra in the chain of 
edge-linked tetrahedra one can calculate that 

C L * = 4 / ( 4 -  TT)= 2 / [ ( n / m ' ) - 2 ]  

for 0 < - TT<-4 and linkedness 2. (5b) 

The solutions of n/m',  TT and CL* according to 
(5b) are listed in the lower part of Table 1. 

( c) Tetrahedra are corner-linked and edge-linked 

It does not seem possible to predict when the 
tetrahedra are corner-linked and when they will be 
edge-linked. Equation (4) is always valid, also for 
mixed cases. Examples a r e  Ca3ml2As  4 (Cordier, 
Czech, Jakowski & Sch/ifer, 1981) or CaGa2Se4 (Klee 
& Schiller, 1981) where A i m s  4 o r  GaSe4 tetrahedra 
are connected by two common comers and one com- 
mon edge to form a two-dimensional net. Hence 
TT = 4 in agreement with n~ m' = 2. 

Notation of the tetrahedron connections 

Predictions of possible tetrahedron connections, 
obtained from the composition by means of (4), (5a) 
or (5b) can be written down by using a crystal- 
chemical formula (Parthf, 1980). For simplicity we 
restrict our considerations here to structures with 
isolated or corner-linked tetrahedra. The number of 
tetrahedron connections that a given tetrahedron has 
is indicated as an exponent following the chemical 
formula of the tetrahedron. The exponent is 
surrounded by square brackets, the number being 
preceeded by a +-sign to characterize it as a 'self- 
coordination' number. The average value of the 
numbers given in the exponents should correspond 
to the calculated TT value of the compound. For a 
finite tetrahedral anion complex ( T T <  2, or in the 

case of a ring TT = 2) it is not necessary to denote 
the exponent. Instead the formula of the finite tetrahe- 
dral anion complex is placed inside square brackets 
with the number of atoms inside the brackets corre- 
sponding exactly to the number of atoms in the finite 
complex. (Note that in our convention round brackets 
enclose the simplest possible formula for an infinite 
tetrahedral anion complex.) The finite complex can 
be further characterized by one of the pictorial prefix 
symbols (see Parthf, 1980) which describe, for 
example, the length of a tetrahedron chain or the 
number of tetrahedra in a ring. It might be added 
here that for a calculated TT value of 2 and comer- 
linked tetrahedra it is not possible to predict if either 
an infinite chain or a ring is formed. For infinite 
tetrahedral anion complexes the dimensionality of 
the complex can be indicated in the conventional way 
by prefixes (~, oo,2 3). 

Examples of TT values calculated from the compo- 
sition and crystal-chemical formulae corresponding 
to the observed crystal structures are listed in Table 
2. The left-hand side of the table lists examples of 
structures with corner-linked tetrahedra and the right- 
hand side those with edge-linked tetrahedra. 

Correlation between the TT parameter and 
the other classification parameters for 

structures with tetrahedral anion complexes 

The TT parameter is numerically equal to Coda's 
modified tetrahedral sharing coefficient. However, the 
definition of TT is different from that for Cc (see 
above). The TT parameter is valid for structures with 
tetrahedral anion complexes for any values of the 
linkedness and connectedness. 

The relation with Zoltai's tetrahedral sharing 
coefficient is given by 

T T = 4 ( C z - 1 ) .  (6) 

The parameter TT can be related with Liebau's con- 
nectedness and linkedness for which we repeat here 
their definitions: 

s = connectedness is the number of C'A4 tetrahedra 
that share anions with the C'A 4 tetrahedron 
considered. 

L=linkedness  is the number of anions shared 
between two adjacent C'A4 tetrahedra. 

The relation between TT, s and L is as follows 
Z m '  

TT=(1/Zm') ~ (s,~f~,). (7) 
i 

The summation is made over the Zm' tetrahedra 
found in one unit cell assuming that there are Z 
formula units CmC',A,  per unit cell. 

(L)i is the average value of the linkedness of the 
C'A4 tetrahedron i. The calculation of the average is 
only necessary in the case where the s tetrahedra 
which share anions with the tetrahedron do not each 
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Table 2. Examples of structures with tetrahedral anion complexes arranged according to decreasing n~ m' ratios 
and increasing TT values up to TT = 4. The crystal-chemical formulae correspond to the experimentally observed 

compounds 

TT Isolated tetrahedra 

C'A4 0 C33A12[Si0413, Ca3[PO,l]2, Cs2[BeF4] , Ba4[SiAs4] 

TT 
C+A, 
C~Axo 1"33 
C~A13 1"5 
CIsAt6 1"6 

C~A19 1"67 
C'A3 2 

C'5At+ 2"4 
C'4A1t 2"5 

CrsA2I 2 .75  

C'~A5 3 
CIoA23 3"4 
CI4A9 3"5 

C'A2 4 

CL Corner-linked tetrahedra CL* 
2 Se2~[Si207], Mg2~[P2OT], K2~[S2OT], Na2Li')[Be2FT] 
3 CaaH2~[SiaOto], Nas~[PaOto ] 
4 Na4S¢.2 ~ [Si4Ot3], Ba3/~ [P, tOa3] 
5 Na,,Sn2 ~ [SisO16].H20, Na3Mg2/~ [PsO16] 
6 Ca4~ [P6019 ] (tromelite) 

- -  Na2~(GeS3) [+2], Cs~(BeF3) t+2], Ca3~(AIAs3) [+2], 2 
N a 3 ~ [ P 3 O g ] ,  K 2 S r ~ [ P 4 O I 2 ]  

[+2] [+3] - -  Er(PO3) 3 (P02.5)2 
- -  C a 2 M g 5 ( O H ) 2 l ( ( S i O 3 ) [ + 2 ] ( S i O 2 . 5 ) [ + 3  ] )4,  

Ca((PO3)t+2](PO2.5)t+3])2 
- -  Ba5 ((8iO3)[+2](SiO2.5)[3+3])2 

2 • [+3] 2 [+3] 
- -  A]2(OH)4¢o(SIO2 .5 )  2 , Rboo(BeF2.5)2  

- -  R b 6 ( ( S i O 2 . 5 )  [3+3](SIO2)[2+4])2 

- -  K2((Si02.5)[+3](SiO2)[+4])2 
3 / l~ l~ '  ~[-t-4] 3 tc :c~ /[  +4] 

- -  col, t.p~, a +21 + ~ol~J2l  (30 

Edge-linked tetrahedra 

Q [ G a 2 C I 6 ] ,  Ba6~) [AI2Sb6]  

~(SiS2) [+4], K2~(SiP2) [+4] 

share the same number of anions with it, i.e. there 
are edge-linked and comer-linked tetrahedra. (L)i is 
defined as 

$t 

(L)i=(1/s,)  ~ Lj. (73) 
J 

Note that if si = 0, it follows that L+ = 0 and (L)i = 0. 
An example where the s adjacent tetrahedra do not 
each share the same number of anions with the 
tetrahedron of interest is found in Ca3AI2Asa Is = 3, 
(L) = (2+ 1 + 1)/3 = 4/3 and since all tetrahedra are 
identical TT = 4]. 

It is much more common that all tetrahedra adja- 
cent to a given tetrahedron share the same number 
of anions with the given tetrahedron. In this case 
(L)i = L~ and equation (7) simplifies to (7'): 

Zm'  

T T = ( 1 / Z m ' )  Y. (s,L,). (7') 
i 

This equation still allows the average linkedness of 
different tetrahedra in the structure to be different. 
An example of this case is kilchoanite, Ca3Si207 (see 
above). For the isolated tetrahedron s = 0 and L = 0, 
but for the chain of the three corner-linked tetrahedra 
L = 1 for each tetrahedron and s = 1, 2 and 1, respec- 
tively. If one writes the chemical formula as 
Ca6[SiO4]~[Si301o], then with m ' =  4 one calculates 
T T =  1. 

For the great majority of the compounds with 
tetrahedral anion complexes all tetrahedra have the 
same average linkedness. This brings us to the 
simplest form of equation (7) 

T T = L ( s )  (7") 

where (s) is the average value of the connectedness 
of all tetrahedra in one unit cell. 

In the majority of the silicates the tetrahedra are 
either all isolated or all corner-linked and then TT = 0 
or TT= is), respectively, i.e. in this case one may 
equate TT with the average value of the connected- 
ness or rephrase TT as the average number of tetra- 
hedron-tetrahedron connections per tetrahedron 
without further specification. 

The maximum value of TT for a given 
central atom and anion 

By combining (3) and (4) in order to eliminate n one 
obtains 

T T = 8 - [ 2 / ( 8 - e A ) ] [ ( m e c / m ' ) +  ec,] 

for0  < - TT<-4 (8) 

which can be transformed to 

mec /m '=½(8 -  T T ) ( 8 - e a ) - e c ,  

for0_< TT<_4. (9) 

We note that mec /m '  corresponds to the charge of 
the tetrahedral anion complex per tetrahedron. Fig. 
2 presents two diagrams with mec/m'  as ordinate 
and TT or n /m '  as abscissa, one for eA = 6 and the 
second for eA = 7. 

The maximum value of TT for a given central atom 
(C')  and anion (A), denoted TTm~x, corresponds, 
according to (4), to  (n/m')min or, according to (8), 
to (mec/m')mi,.  The limiting case is obtained from 
(8) if m = 0 which results in 

TTmax=8-2ec ' / (8 -eA)  f o r 0 -  < TT<-4. (10) 
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The TTraax value applies to a neutral compound of 
f t 1 composition C8_eAAec, or C A4-~rr.=. 

The neutral compound with TTma,, corresponds to 
a degenerate case of the structures with tetrahedral 
anion complexes where the available valence elec- 
trons of the C' and A atoms are fully sufficient to 
complete the octets of all atoms of the tetrahedral 
complex. Thus there are no more cations C necessary. 
In Fig, 2 the plots of the compounds with TTmax are 
found on the base lines. The crystal-chemical for- 
mulae or these compounds are listed in Table 3. This 

2 (8~F4)2- 

m e  c 

1 

0 TT - -~  

4:1 n/m'.,,- 

I CL 

(%FT)3- 
eA=7 

O' " f f " " ~  (Be F3) I - 

, I -  I 
(C2A7) ~((Be2Fs) - 

2 3 4 
7:.2 3.'1 5:2 2:1 

2 co 

~, IIG 0 04 )5- 

:o7) 8- eA=6 

_ "%,(c~%) 4- 

table can be used to grasp quickly the degree to which 
a tetrahedron connection can be increased with a 
given central atom and given anions. For example, it 
is impossible to have sulfate structures where each 
tetrahedron has more than two comers that are each 
shared with another tetrahedron. On the other hand 
one can conclude that aluminates in which one 
tetrahedron corner is connected with two other 
tetrahedra may exist, as is demonstrated for Caml407 
in the Appendix. 

It should be mentioned that neutral compounds in 
which there are several kinds of C' or A atoms also 
exist. For these compounds the parameters ec, and 
ea in equation (10) have to be replaced by mean 
values. 
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Birgitta Kunzler for help with the preparation of the 
drawing. This study has been supported by the Swiss 
National Science Foundation under contract No. 
2.035-0.86. 

APPENDIX 

Derivation of T T - n / m '  equations from 
the valence-electron equation for the 

tetrahedral sharing coefficient 

The equation relating ZoltaY's tetrahedral sharing 
coefficient for tetrahedral structures to the valence- 
electron concentration of the compound as given by 
Parth~ (1964) can be modified for application to 
structures with tetrahedral anion complexes as 
follows 

c z = 2 i + I - V E C ' ( i E + i ) / 4 ( 8 - V E C  ') (11) 

where /=largest  integer of [(32/VEC')-4] and 
VEC' = (mec+ m'ec,+ neA)/(m'+ n) which corre- 
sponds to the total number of valence electrons of 
the compound divided by the number of atoms in the 
tetrahedral anion complex. VEC' varies for com- 
pounds with 2 -> cz -> 1 between 5.33 (for example for 
SiO2) and 6.40 [for example for (SiO4)4-]. 

(At,07) 2- 

o J-x~4 ",LC'=°~l II  NLs% I ~y~o~ I "~L s~°~ , I , ~ o o 2 s ~  
"rT--  T 1.3~ 1.s "1.6 ~ 2.5 ~ 3.5 ~" 5 5.~ 6 T 

4:1 n/re'.--- 7:2 10:313:416:5 3:1 11:4 5:2 9:4 2:1 11:6 7:4 5:3 3,2 
1 CL ---- 2 3 4 5 cO 

Fig. 2. Charge of the tetrahedral anion complex per tetrahedron as a function of TT. Equation (9) was used for the construction of the 
lines at 0_< TT<_4. The line plotted for TT>4 was obtained from (3) and (14b). Full circles correspond to tetrahedral anion 
complexes which have been found experimentally; open circles to anion complexes which have not yet been found. For reasons of 
limited space the tetrahedral anion complexes of the hexaphosphate tromelite Ca4~[P6PI~] (Corbridge, 1978) and of other more 
complicated silicates and phosphates listed in Table 2 have not been plotted here. 
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Table 3. Composition and crystal-chemical formulae 
for the neutral compounds with degenerated tetrahedral 

anion complexes 

ec, eA TTm~ Crystal-chemical formulae 
2 7 4 3~(BeF2) [+'H 
3 7 2 ~[(AIC13)2[+23] * 

4 7 0 [SiF4] 
4 6 4 3(SIO2) [+4] 
5 6 3 (~[ (PO2.5) [4+3 ]] 2 t.Dt-~ ~[+3] 3 t'D{- ~ "~[+3] eoKl v2.512 ~ cokiv2.5/2 
6 6 2 L(S03) [+23, (])[ (SO3) [3 +2] ] 

7 6 1 ~[C1207] 
R 6 0 [XeO~] 

• A12C16 is 'bicyclic', that means the two tetrahedra have a 
common edge (s = 1, L=2, CL* = 1). 

Equation (11) is valid for compounds having 
tetrahedral sharing coefficients between 1 and 4, that 
means it is applicable also to compounds where more 
than two tetrahedra are connected with the comer of 
a given tetrahedron, as, for example, in Caml40 7 or 
Ga2S3 and Ca3AI2Ge3 or ZnS. 

The most important step for the simplification of 
equation (11) is the replacement of VEC' by use of 
(3). Noting that 

V E C ' / ( 8 -  VEC')= n /m '  (12) 

it is now possible to rewrite (11) as follows 

C z = 3 - ½ ( n / m  ') for 1<-Cz<-2, 

6.40>-- VEC'_>5.33 (13a) 

C z = 5 - 3 ( n / m  ') for 2<-Cz<-3, 

5.33_> VEC'_>4.57 (13b) 

C z = 7 - 3 ( n / m  ') for 3 -  C z - 4 ,  

4 .57_  > VEC' _> 4.00. (13c) 

Table 4. Formulae of  the tetrahedral anion complexes 
for different values of  T T  independent of  the kind of  

tetrahedron linkage 

Each tetrahedron comer  TT = 0 1 2 3 4 
unshared or shared with C'A4 C'A7/2 C'A3 C'A5/2 C'A2 
one other tetrahedron 

Each tetrahedron corner TT = 4 5 6 7 8 
shared with one or C'A2 C'All /6  C'A5/3 C'A3/2 C'A4/3 
two tetrahedra 

Each tetrahedron comer  TT = 8 9 10 11 12 
shared with two or C'A4/3 C'As/4 C'AT/6 C'AI3/! 2 C'A 
three tetrahedra 

As an example for the application of (14b) and 
Table 4 we consider Ca3A12Ge3 (Cordier & Sch/ifer, 
1982). The ratio n~ m' = 3 leads to TT = 7 which agrees 
well with the observed structural features. The A1Ge4 
tetrahedra are corner-connected to a framework in 
such a way, that three comers of each tetrahedron 
are connected with two other tetrahedra and one 
corner with one other tetrahedron. 

As another example we can discuss CAA][44°O7 with 
n / m ' = 7  which results in T T =  5½ (see also Fig. 2). 
As the simplest solution one can assume that the 
tetrahedral anion complex might be built up of equal 

, [+5] , [+6] amounts of ( C All/6) and ( C A5/3) tetrahedra. 
A possible crystal-chemical formula is thus 
caa((A10~l/6)tv+51(A105/3)~ +61) which corresponds to 
the experimentally observed structural features of 
CaA140 7 (Goodwin & Lindop, 1970; Ponomarev, 
Kheiker & Belov, 1971). The structure had actually 
not been described in such a way. That the proposed 
crystal-chemical formula is correct was verified by 
us after calculating a complete list of interatomic 
distances. 

Making use of (6), equations (13) transform into 

T T =  l [ 8 - 2 ( n / m ' ) ]  for 0 -  < TT <_4, 

4->n/m'->2 (14a) 

T T =  2[8 - 3 ( n / m ' ) ]  for 4 -  < TT<- 8, 

2>-n/m'-> 4 (14b) 

T T = 3 [ 8 - 4 ( n / m ' ) ]  for 8<- TT<_ 12, 

~-> n/m'-> 1. (14c) 

Equation (14a), which is identical to (4), applies to 
the case where each tetrahedron corner is either 
unshared or connected with one other tetrahedron. 
Equation (14b) applies to the case where each tetrahe- 
dron comer is connected with one or two tetrahedra, 
and equation (14c) where each comer is connected 
with two or three tetrahedra. Equations (14) serve to 
calculate the simplest formulas of the tetrahedral 
anion complexes with T T  varying from 0 to 12 as 
given in Table 4. 
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